فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی









متن کامل


نویسندگان: 

PARVIN HAMID | ALIZADEH HOSEIN | MOSHKI MOHSEN

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    2
  • شماره: 

    2
  • صفحات: 

    1-10
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    238
  • دانلود: 

    0
چکیده: 

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to Ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition, have been subject to this transition. The classifier Ensemble which uses a number of base classifiers is considered as meta-classifier to learn any classification problem in pattern recognition. Although some researchers think they are better than single classifiers, they will not be better if some conditions are not met. The most important condition among them is diversity of base classifiers. Generally in design of multiple classifier systems, the more diverse the results of the classifiers, the more appropriate the aggregated result. It has been shown that the necessary diversity for the Ensemble can be achieved by manipulation of dataset features, manipulation of data points in dataset, different sub-samplings of dataset, and usage of different classification algorithms. We also propose a new method of creating this diversity. We use Linear Discriminant Analysis to manipulate the data points in dataset. Although the classifier Ensemble produced by proposed method may not always outperform all of its base classifiers, it always possesses the diversity needed for creation of an Ensemble, and consequently it always outperforms all of its base classifiers on average.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 238

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

PASRAPOOR M. | BILSTRUP U.

نشریه: 

VIRTUAL

اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    1
  • شماره: 

    1
  • صفحات: 

    137-141
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    170
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 170

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

MENG J.

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    60
  • شماره: 

    -
  • صفحات: 

    234-242
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    122
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 122

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    11
  • شماره: 

    42
  • صفحات: 

    94-101
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    35
  • دانلود: 

    0
چکیده: 

Fake information, better known as hoaxes, is often found on social media. Currently, social media is not only used to make friends or socialize with friends online, but some use it to spread hate speech and false information. Hoaxes are very dangerous in social life, especially in countries with large populations and ethnically diverse cultures, such as Indonesia. Although there have been many studies on detecting false information, the accuracy and efficiency still need to be improved. To help prevent the spread of these hoaxes, we built a model to identify false information in Indonesian using an Ensemble classifier that combines the n-gram method, term frequency-inverse document frequency, and passive-aggressive classifier method. The evaluation process was carried out using 5000 samples from Twitter social media accounts in this study. The testing process is carried out using four schemes by dividing the dataset into training and test data based on the ratios of 90: 10, 80: 20, 70: 30, and 60: 40. The inspection results show that our software can accurately detect hoaxes at 91. 8%. We also found an increase in the accuracy and precision of hoax detection testing using the proposed method compared to several previous studies. The results show that our proposed method can be developed and used in detecting hoaxes in Indonesian on various social media platforms.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 35

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1390
  • دوره: 

    -
  • شماره: 

    2 (پیاپی 16)
  • صفحات: 

    29-56
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    1682
  • دانلود: 

    378
چکیده: 

یکی از روش های مناسب برای بهبود صحت دسته بندی نمونه ها، استفاده از چند دسته بند مختلف و سپس ترکیب نتایج خروجی آنهاست که اغلب تحت عنوان «سیستم های دسته بند چندگانه» یا «سیستم های شورایی» خوانده می شود. سیستم های دسته بند چندگانه به طور کلی شامل دو بخش اصلی «ایجاد شورای دسته بندها» و «قواعد ترکیب» آنهاست. پژوهش گران حوزه های مختلف از جمله بازشناسایی الگو، یادگیری ماشینی و آمار استفاده از سیستم های شورایی را بررسی کرده اند. نبوی کریزی و کبیر اولین مقاله مروری فارسی را در این حوزه ارائه و روش های ترکیب دسته بندها را معرفی کرده اند. با این حال بررسی روند مقالات اخیر نشان می دهد پژوهش در حوزه سیستم های شورا بر روش های ایجاد شورای دسته بندها تمرکز کرده اند. از این رو در این مقاله تلاش شده است، ابتدا چارچوبی برای رویکردهای مختلف ایجاد شورای دسته بندها ارائه شود. بر اساس این ساختار، روش های مختلف هر رویکرد معرفی شده و در ادامه، روش های ترکیب دسته بندها به اجمال بیان شده است. در پایان، با بررسی روند پژوهش های موجود، زمینه های تحقیقاتی مناسب در حوزه سیستم های شورایی ارائه شده است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1682

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 378 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 2
نویسندگان: 

Kashef Sh. | NEZAMABADI POUR H.

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    7
  • شماره: 

    3
  • صفحات: 

    355-365
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    210
  • دانلود: 

    0
چکیده: 

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific features. Label-specific features means that each class label is supposed to have its own characteristics and is determined by some specific features that are the most discriminative features for that label. LIFT employs clustering methods to discover the properties of data. More precisely, LIFT divides the training instances into positive and negative clusters for each label which respectively consist of the training examples with and without that label. It then selects representative centroids in the positive and negative instances of each label by k-means clustering and replaces the original features of a sample by the distances to these representatives. Constructing new features, the dimensionality of the new space reduces significantly. However, to construct these new features, the original features are needed. Therefore, the complexity of the process of multi-label classification does not diminish, in practice. In this paper, we make a modification on LIFT to reduce the computational burden of the classifier and improve or at least preserve the performance of it, as well. The experimental results show that the proposed algorithm has obtained these goals, simultaneously.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 210

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

نشریه: 

Applied Sciences

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    10
  • شماره: 

    8
  • صفحات: 

    2788-2797
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    27
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 27

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Anisha C.D. | Saranya K.G.

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    12
  • شماره: 

    Special Issue
  • صفحات: 

    1649-1654
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    22
  • دانلود: 

    0
چکیده: 

A stroke occurs in the scenario wherein the blood supply to the brain is blocked, leading to a lack of oxygen to the blood. There is a need for the early diagnosis of the stroke to handle the emergency situations of stroke in an efficient manner. Integration of Artificial Intelligence (AI) in the early diagnosis of stroke provides efficiency and flexibility. Artificial Intelligence (AI), which is a mimic of human intelligence has a wide range of applications from small scale systems to high-end enterprise systems. Artificial Intelligence has emerged as an efficient and accurate decision-making system in healthcare systems. Machine Learning (ML) is a subset of Artificial Intelligence (AI). The incorporation of machine learning techniques in stroke diagnosis systems provides faster and precise decisions. The proposed system aims to develop an early diagnosis of stroke disorder using a homogenous logistic regression Ensemble classifier. Logistic regression is a linear algorithm that uses maximum likelihood methodology for predictions and a standard machine learning model for two-class problems. The prediction is improved by accumulating the predictions of two or more logistic regression using a bagging Ensemble classifier thereby increasing the accuracy of the stroke diagnosis system. The accumulation of prediction of two or more same models is known as a homogenous Ensemble classifier. The results obtained show that the proposed homogenous logistic regression Ensemble model has higher accuracy than single logistic regression.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 22

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    15
تعامل: 
  • بازدید: 

    140
  • دانلود: 

    0
چکیده: 

THE SYNTHETIC APERTURE RADAR (SAR) IS A TYPE OF COHERENT IMAGING RADAR THAT OPERATES IN THE MICROWAVE BAND. A SAR SYSTEM CAN PROVIDE A DAY-OR-NIGHT, ALL-WEATHER MEANS OF REMOTE SENSING AND PRODUCES HIGH-RESOLUTION IMAGES OF THE LAND UNDER THE ILLUMINATION OF RADAR BEAMS. POLARIMETRIC SYNTHETIC APERTURE RADAR (POLSAR) SYSTEM IS AN ADVANCED FORM OF SAR, WHICH FOCUSES ON EMITTING AND RECEIVING FULLY POLARIZED RADAR WAVES TO CHARACTERIZE TARGETS. POLSAR IMAGES PROVIDE SIGNIFICANTLY MORE INFORMATION THAN SINGLE SAR IMAGES, AND AS A CONSEQUENCE POLSAR DATA CAN BE USED TO DISTINGUISH THE SCATTERING OBJECTS AND TO IMPROVE IMAGE CLASSIFICATION MUCH BETTER THAN CONVENTIONAL SAR DATA. SINCE A LARGE NUMBER OF PARAMETERS CAN BE EXTRACTED FROM POLSAR DATA, OPTIMUM FEATURES ARE USED TO FORM FEATURE VECTOR. SPARSE REPRESENTATION AIMS TO APPROXIMATE A TARGET SIGNAL USING A LINEAR COMBINATION OF ELEMENTARY SIGNALS DRAWN FROM A LARGE CANDIDATE SET, WHICH IS CALLED AS DICTIONARY. SPARSE REPRESENTATIONS HAVE THEREFORE INCREASINGLY BECOME RECOGNIZED AS PROVIDING EXTREMELY HIGH PERFORMANCE FOR DIVERSE APPLICATIONS. IN THIS PAPER, WE USED THIS APPROACH AS A classifier. ON THE OTHER HAND, ACCORDING TO RECENT RESEARCH RESULTS, Ensemble classifier AS AN EFFECTIVE APPROACH HAS MORE CAPABILITIES COMPARE TO SINGLE-classifierS. IT BUILDS AN Ensemble OF WEAK classifierS AND COMBINES THE DECISIONS OF THESE WEAK classifierS TO ARRIVE AT THE FINAL DECISION. IN THIS PAPER USING A SPARSE REPRESENTATION-BASED classifier AND OTHER DIVERSE SINGLE-classifierS AN Ensemble OF classifierS IS PROPOSED. WE USED NAÏVE BAYES RULE TO COMBINE THE OUTPUTS OF INDIVIDUAL classifierS. THE EXPERIMENTS OVER A BENCHMARK POLSAR IMAGE DEMONSTRATE THE EFFECTIVENESS OF THE PROPOSED ALGORITHM IN TERMS OF ACCURACY AND RELIABILITY OVER THE EXISTING TECHNIQUES.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 140

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    14
  • شماره: 

    5
  • صفحات: 

    687-700
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    13
  • دانلود: 

    0
چکیده: 

Introduction: The study explores the use of Electroencephalograph (EEG) signals as a means to uncover various states of the human brain, with a specific focus on emotion classification. Despite the potential of EEG signals in this domain, existing methods face challenges. Features extracted from EEG signals may not accurately represent an individual's emotional patterns due to interference from time-varying factors and noise. Additionally, higher-level cognitive factors, such as personality, mood, and past experiences, further complicate emotion recognition. The dynamic nature of EEG data in terms of time series introduces variability in feature distribution and interclass discrimination across different time stages. Methods: To address these challenges, the paper proposes a novel adaptive Ensemble classification method. The study introduces a new method for providing emotional stimuli, categorizing them into three groups (sadness, neutral, and happiness) based on their valence-arousal (VA) scores. The experiment involved 60 participants aged 19–30 years, and the proposed method aimed to mitigate the limitations associated with conventional classifiers. Results: The results demonstrate a significant improvement in the performance of emotion classifiers compared to conventional methods. The classification accuracy achieved by the proposed adaptive Ensemble classification method is reported at 87.96%. This suggests a promising advancement in the ability to accurately classify emotions using EEG signals, overcoming the limitations outlined in the introduction. Conclusion: In conclusion, the paper introduces an innovative approach to emotion classification based on EEG signals, addressing key challenges associated with existing methods. By employing a new adaptive Ensemble classification method and refining the process of providing emotional stimuli, the study achieves a noteworthy improvement in classification accuracy. This advancement is crucial for enhancing our understanding of the complexities of emotion recognition through EEG signals, paving the way for more effective applications in fields such as neuroinformatics and affective computing.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 13

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button